Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.528
Filtrar
1.
J Integr Neurosci ; 23(3): 49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38538221

RESUMO

Cardiac pain is an index of cardiac ischemia that helps the detection of cardiac hypoxia and adjustment of activity in the sufferer. Drivers and thresholds of cardiac pain markedly differ in different subjects and can oscillate in the same individual, showing a distinct circadian rhythmicity and clinical picture. In patients with syndrome X or silent ischemia, cardiac pain intensity may cause neurogenic stress that potentiates the cardiac work and intensifies the cardiac hypoxia and discomfort of the patient. The reasons for individual differences in cardiac pain sensation are not fully understood. Thus far, most attention has been focused on inappropriate regulation of the heart by the autonomic nervous system, autacoids, and cardiovascular hormones. Herein, we summarize evidence showing that the autonomic nervous system regulates cardiac pain sensation in cooperation with vasopressin (AVP). AVP is an essential analgesic compound and it exerts its antinociceptive function through actions in the brain (the periaqueductal gray, caudate nucleus, nucleus raphe magnus), spinal cord, and heart and coronary vessels. Vasopressin acts directly by means of V1 and V2 receptors as well as through multiple interactions with the autonomic nervous system and cardiovascular hormones, in particular, angiotensin II and endothelin. The pain regulatory effects of the autonomic nervous system and vasopressin are significantly impaired in cardiovascular diseases.


Assuntos
Angina Pectoris , Sistema Nervoso Autônomo , Isquemia Miocárdica , Vasopressinas , Humanos , Sistema Nervoso Autônomo/fisiopatologia , Vasopressinas/fisiologia , Angina Pectoris/fisiopatologia , Isquemia Miocárdica/complicações
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
3.
J Neuroendocrinol ; 33(7): e12998, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34189788

RESUMO

Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle. This is contrasted with VP production and release from the bed nucleus of the stria terminalis and the medial amygdala, which is influenced by gonadal hormones, as well as with VP originating from the PVN and SON, which is released in the neural lobe and central targets. The release of VP from the SCN signals the near arrival of the resting phase in rodents and prepares their physiology accordingly by down-modulating corticosterone secretion, the reproductive cycle and locomotor activity. All these circadian variables are regulated within very narrow boundaries at a specific time of the day, where day-to-day variation is less than 5% at any particular hour. However, the circadian peak values can be at least ten times higher than the circadian trough values, indicating the need for an elaborate feedback system to inform the SCN and other participating nuclei about the actual levels reached during the circadian cycle. In short, the interplay between SCN circadian output and peripheral feedback to the SCN is essential for the adequate organisation of all circadian rhythms in physiology and behaviour.


Assuntos
Comportamento/fisiologia , Relógios Biológicos/fisiologia , Descanso/fisiologia , Vasopressinas/fisiologia , Animais , Ritmo Circadiano/fisiologia , Corticosterona/metabolismo , Corticosterona/fisiologia , Humanos , Fotoperíodo , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo
4.
Pediatrics ; 147(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33795481

RESUMO

Arginine vasopressin (AVP)-mediated osmoregulatory disorders, such as diabetes insipidus (DI) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) are common in the differential diagnosis for children with hypo- and hypernatremia and require timely recognition and treatment. DI is caused by a failure to concentrate urine secondary to impaired production of or response to AVP, resulting in hypernatremia. Newer methods of diagnosing DI include measuring copeptin levels; copeptin is AVP's chaperone protein and serves as a surrogate biomarker of AVP secretion. Intraoperative copeptin levels may also help predict the risk for developing DI after neurosurgical procedures. Copeptin levels hold diagnostic promise in other pediatric conditions, too. Recently, expanded genotype and phenotype correlations in inherited DI disorders have been described and may better predict the clinical course in affected children and infants. Similarly, newer formulations of synthetic AVP may improve pediatric DI treatment. In contrast to DI, SIADH, characterized by inappropriate AVP secretion, commonly leads to severe hyponatremia. Contemporary methods aid clinicians in distinguishing SIADH from other hyponatremic conditions, particularly cerebral salt wasting. Further research on the efficacy of therapies for pediatric SIADH is needed, although some adult treatments hold promise for pediatrics. Lastly, expansion of home point-of-care sodium testing may transform management of SIADH and DI in children. In this article, we review recent developments in the understanding of pathophysiology, diagnostic workup, and treatment of better outcomes and quality of life for children with these challenging disorders.


Assuntos
Diabetes Insípido/diagnóstico , Diabetes Insípido/terapia , Síndrome de Secreção Inadequada de HAD/diagnóstico , Síndrome de Secreção Inadequada de HAD/terapia , Neurofisinas , Precursores de Proteínas , Vasopressinas , Criança , Diabetes Insípido/etiologia , Humanos , Síndrome de Secreção Inadequada de HAD/etiologia , Neurofisinas/fisiologia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33745438

RESUMO

INTRODUCTION: Angiotensin II (ANG II) and vasopressin (VP) interact in several physiological mechanisms, playing a role in arterial hypertension and congestive heart failure. Aim and Methods of Search: To overview the primary mechanism involved in the regulation of cardiovascular function, PubMed/Medline was searched, and authors selected original articles and reviews written in English. RESULTS: Angiotensin II (ANG II) and vasopressin (VP) are involved in several physiological mechanisms. ANG II stimulates VP release via angiotensin receptor 1. ANG II and VP stimulate aldosterone synthesis and secretion and enhance its action at the renal collecting duct level. VP is also involved in the cardiovascular reflex control of the sympathetic nervous system (SNS). Also, VP potentiates vasoconstriction and cardiac contractility, enhancing the effect of ANG II on sympathetic tone and arterial pressure. On the other hand, ANG II and VP act antagonistically in regulating baroreflex control of the SNS. There is evidence that high VP plasma levels increase baroreflex sympatho-inhibitory responses, and the arterial baroreflex response is shifted to lower pressure. This cardiovascular reflex control is mediated mainly in the brain, specifically in the circumventricular organ area postrema (AP). The modulation of cardiovascular reflex control induced by VP is abolished after lesions of the AP. VP modulation of baroreflex function is also under the control of α2-adrenergic pathway arising from the nucleus of the solitary tract (NTS) and synapsing on VP-ergic neurons of supraoptic and paraventricular nuclei. Presynaptic α2-adrenergic stimulation within the NTS inhibits VP release induced by hypovolemia and the effects of VP and AP on baroreflex control of SNS, thus showing baroreceptor afferent inputs are processed within the NTS and contribute to the increased baroreflex sympatho-inhibitory responses. DISCUSSION: In patients with congestive heart failure (CHF), plasma VP levels are elevated, inducing an up-regulation of aquaporin 2 water channel expression in renal collecting duct (CD) cells provoking exaggerated water retention and dilutional hyponatremia. Antagonists of VP and ANG II receptors reduce edema, body weight, and dyspnea in CHF patients. CONCLUSION: Hormonal imbalance between ANG II, VP, and SNS may induce hypertension and impaired water-electrolyte balance in cardiovascular diseases.


Assuntos
Angiotensina II/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Insuficiência Cardíaca/fisiopatologia , Hipertensão/fisiopatologia , Vasopressinas/fisiologia , Angiotensina II/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Humanos , Receptor Cross-Talk/fisiologia , Reflexo Anormal/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Vasopressinas/metabolismo
6.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32792133

RESUMO

Most cases of acquired central diabetes insipidus are caused by destruction of the neurohypophysis by: 1) anatomic lesions that destroy the vasopressin neurons by pressure or infiltration, 2) damage to the vasopressin neurons by surgery or head trauma, and 3) autoimmune destruction of the vasopressin neurons. Because the vasopressin neurons are located in the hypothalamus, lesions confined to the sella turcica generally do not cause diabetes insipidus because the posterior pituitary is simply the site of the axon terminals that secrete vasopressin into the bloodstream. In addition, the capacity of the neurohypophysis to synthesize vasopressin is greatly in excess of the body's needs, and destruction of 80-90% of the hypothalamic vasopressin neurons is required to produce diabetes insipidus. As a result, even large lesions in the sellar and suprasellar area generally are not associated with impaired water homeostasis until they are surgically resected. Regardless of the etiology of central diabetes insipidus, deficient or absent vasopressin secretion causes impaired urine concentration with resultant polyuria. In most cases, secondary polydipsia is able to maintain water homeostasis at the expense of frequent thirst and drinking. However, destruction of the osmoreceptors in the anterior hypothalamus that regulate vasopressin neuronal activity causes a loss of thirst as well as vasopressin section, leading to severe chronic dehydration and hyperosmolality. Vasopressin deficiency also leads to down-regulation of the synthesis of aquaporin-2 water channels in the kidney collecting duct principal cells, causing a secondary nephrogenic diabetes insipidus. As a result, several days of vasopressin administration are required to achieve maximal urine concentration in patients with CDI. Consequently, the presentation of patients with central diabetes insipidus can vary greatly, depending on the size and location of the lesion, the magnitude of trauma to the neurohypophysis, the degree of destruction of the vasopressin neurons, and the presence of other hormonal deficits from damage to the anterior pituitary.


Assuntos
Diabetes Insípido Neurogênico/etiologia , Doenças da Hipófise/complicações , Neuro-Hipófise/patologia , Aquaporina 2/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/epidemiologia , Diabetes Insípido Neurogênico/terapia , Homeostase/fisiologia , Humanos , Neurofisinas/fisiologia , Doenças da Hipófise/diagnóstico , Doenças da Hipófise/epidemiologia , Doenças da Hipófise/terapia , Polidipsia/diagnóstico , Polidipsia/epidemiologia , Polidipsia/etiologia , Polidipsia/terapia , Poliúria/diagnóstico , Poliúria/epidemiologia , Poliúria/etiologia , Poliúria/terapia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
7.
Horm Behav ; 124: 104780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544402

RESUMO

Behavioral neuroendocrinology has a rich history of using diverse model organisms to elucidate general principles and evolution of hormone-brain-behavior relationships. The oxytocin and vasopressin systems have been studied in many species, revealing their role in regulating social behaviors. Oxytocin and vasopressin receptors show remarkable species and individual differences in distribution in the brain that have been linked to diversity in social behaviors. New technologies allow for unprecedented interrogation of the genes and neural circuitry regulating behaviors, but these approaches often require transgenic models and are most often used in mice. Here we discuss seminal findings relating the oxytocin and vasopressin systems to social behavior with a focus on non-traditional animal models. We then evaluate the potential of using CRISPR/Cas9 genome editing to examine the roles of genes and enable circuit dissection, manipulation and activity monitoring of the oxytocin and vasopressin systems. We believe that it is essential to incorporate these genetic and circuit level techniques in comparative behavioral neuroendocrinology research to ensure that our field remains innovative and attractive for the next generation of investigators and funding agencies.


Assuntos
Edição de Genes , Ocitocina/fisiologia , Comportamento Social , Vasopressinas/fisiologia , Animais , Animais Geneticamente Modificados , Ciências Biocomportamentais/história , Ciências Biocomportamentais/tendências , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/história , Edição de Genes/tendências , História do Século XXI , Camundongos , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética
8.
Eur J Endocrinol ; 183(2): R29-R40, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32580146

RESUMO

For an endocrinologist, nephrogenic diabetes insipidus (NDI) is an end-organ disease, that is the antidiuretic hormone, arginine-vasopressin (AVP) is normally produced but not recognized by the kidney with an inability to concentrate urine despite elevated plasma concentrations of AVP. Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. For a geneticist, hereditary NDI is a rare disease with a prevalence of five per million males secondary to loss of function of the vasopressin V2 receptor, an X-linked gene, or loss of function of the water channel AQP2. These are small genes, easily sequenced, with a number of both recurrent and private mutations described as disease causing. Other inherited disorders with mild, moderate or severe inability to concentrate urine include Bartter's syndrome and cystinosis. MAGED2 mutations are responsible for a transient form of Bartter's syndrome with severe polyhydramnios. The purpose of this review is to describe classical phenotype findings that will help physicians to identify early, before dehydration episodes with hypernatremia, patients with familial NDI. A number of patients are still diagnosed late with repeated dehydration episodes and large dilations of the urinary tract leading to a flow obstructive nephropathy with progressive deterioration of glomerular function. Families with ancestral X-linked AVPR2 mutations could be reconstructed and all female heterozygote patients identified with subsequent perinatal genetic testing to recognize affected males within 2 weeks of birth. Prevention of dehydration episodes is of critical importance in early life and beyond and decreasing solute intake will diminish total urine output.


Assuntos
Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Desidratação/prevenção & controle , Diabetes Insípido Nefrogênico/terapia , Feminino , Triagem de Portadores Genéticos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Testes Genéticos , Humanos , Hipernatremia , Recém-Nascido , Glomérulos Renais/fisiopatologia , Masculino , Mutação , Neurofisinas/sangue , Neurofisinas/fisiologia , Concentração Osmolar , Gravidez , Diagnóstico Pré-Natal , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
9.
Psychoneuroendocrinology ; 119: 104773, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590293

RESUMO

Neuropsychiatric disturbances with altered social cognition, depression and anxiety are among the most debilitating early features in the fatal neurodegenerative disorder Huntington disease (HD) which is caused by an expanded CAG repeat in the huntingtin gene. The underlying neurobiological mechanisms are not known. Neuropathological analyses of postmortem human HD hypothalamic tissue have demonstrated loss of the neuropeptides oxytocin and vasopressin. The dynamic interplay between these neuropeptides is crucial for modulating emotional and social behavior but its role in HD is unclear. In the present study, we have investigated the effect of expressing the mutant huntingtin gene on the development of behavioral changes using the transgenic BACHD mouse model at different ages. We show for the first time that BACHD mice exhibit deficits in social behavior with parallel aberrations in the balance of the oxytocin-vasopressin system. Importantly, our data also show that restoration of the interplay within the system with an acute dose of intranasal oxytocin immediately prior to behavioral testing can rescue the depressive-like phenotype but not anxiety-like behavior in this transgenic model. These findings demonstrate that imbalances in the oxytocin-vasopressin interplay contribute to the neuropsychiatric component of HD and suggest that interventions aimed at restoring the blunted levels of oxytocin may confer therapeutic benefits for this disease.


Assuntos
Ansiedade , Proteína Huntingtina/genética , Doença de Huntington , Ocitocina/metabolismo , Vasopressinas/metabolismo , Administração Intranasal , Animais , Animais Recém-Nascidos , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/psicologia , Masculino , Camundongos , Camundongos Transgênicos , Ocitocina/administração & dosagem , Ocitocina/fisiologia , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Comportamento Social , Vasopressinas/fisiologia
10.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101398, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387127

RESUMO

The two main differential diagnoses of central diabetes insipidus are nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between those entities is essential as treatment differs substantially with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the indirect water deprivation test had several pitfalls, resulting in a low diagnostic accuracy. With the introduction of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of diabetes insipidus was new evaluated. While unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, a stimulation test is needed to differentiate patients with central diabetes insipidus from patients with primary polydipsia. Stimulation can either be achieved through hypertonic saline infusion or arginine infusion. While the former showed high diagnostic accuracy and superiority over the indirect water deprivation test in a recent validation study, the diagnostic accuracy for arginine-stimulated copeptin was slightly lower, but superior in test tolerance. In summary of the recent findings, a new copeptin based diagnostic algorithm is proposed for the reliable diagnosis of diabetes insipidus.


Assuntos
Diabetes Insípido/diagnóstico , Técnicas de Diagnóstico Endócrino , Biomarcadores/análise , Biomarcadores/sangue , Diabetes Insípido/sangue , Diabetes Insípido/etiologia , Diabetes Insípido Nefrogênico/sangue , Diabetes Insípido Nefrogênico/diagnóstico , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Neurogênico/sangue , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/etiologia , Diagnóstico Diferencial , Técnicas de Diagnóstico Endócrino/tendências , Humanos , Neurofisinas/sangue , Neurofisinas/fisiologia , Poliúria/sangue , Poliúria/diagnóstico , Poliúria/etiologia , Precursores de Proteínas/sangue , Precursores de Proteínas/fisiologia , Vasopressinas/sangue , Vasopressinas/fisiologia
11.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101384, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32205050

RESUMO

In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.


Assuntos
Diabetes Insípido/diagnóstico , Diabetes Insípido/terapia , Desidratação/complicações , Desidratação/diagnóstico , Desidratação/fisiopatologia , Desidratação/prevenção & controle , Diabetes Insípido/etiologia , Diabetes Insípido Nefrogênico/diagnóstico , Diabetes Insípido Nefrogênico/etiologia , Diabetes Insípido Nefrogênico/terapia , Diabetes Insípido Neurogênico/diagnóstico , Diabetes Insípido Neurogênico/terapia , Diagnóstico Diferencial , Feminino , Humanos , Hipernatremia/diagnóstico , Hipernatremia/etiologia , Hipernatremia/terapia , Neurofisinas/fisiologia , Neurofisinas/uso terapêutico , Osmorregulação/fisiologia , Polidipsia/sangue , Polidipsia/diagnóstico , Polidipsia/terapia , Poliúria/sangue , Poliúria/diagnóstico , Poliúria/terapia , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/etiologia , Complicações na Gravidez/terapia , Precursores de Proteínas/fisiologia , Precursores de Proteínas/uso terapêutico , Vasopressinas/fisiologia , Vasopressinas/uso terapêutico , Equilíbrio Hidroeletrolítico/fisiologia
12.
Vitam Horm ; 113: 29-53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32138952

RESUMO

The origin of the oxytocin (OT)/vasopressin (VP) signaling system is thought to date back more than 600million years. OT/VP-like peptides have been identified in numerous invertebrate phyla including molluscs, annelids, nematodes and insects. However, to date we only have a limited understanding of the biological role(s) of this GPCR-mediated signaling system in insects. This chapter presents the current knowledge of OT/VP-like neuropeptide signaling in insects by providing a brief overview of insect OT/VP-like neuropeptides, their genetic and structural commonalities, and their experimentally tested and proposed functions. Despite their widespread occurrence across insect orders these peptides (and their endogenous receptors) appear to be absent in common insect model species, such as flies and bees. We therefore explain the known functionalities of this signaling system in three different insect model systems: beetles, locusts, and ants. Additionally, we review the phylogenetic distribution of the OT/VP signaling system in arthropods as obtained from extensive genome/transcriptome mining. Finally, we discuss the unique challenges in the development of selective OT/VP ligands for human receptors and share our perspective on the possible application of insect- and other non-mammalian-derived OT/VP-like peptide ligands in pharmacology.


Assuntos
Ocitocina/fisiologia , Transdução de Sinais/fisiologia , Vasopressinas/fisiologia , Animais , Insetos , Neuropeptídeos
13.
Best Pract Res Clin Endocrinol Metab ; 34(5): 101385, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32169331

RESUMO

The treatment of central diabetes insipidus has not changed significantly in recent decades, and dDAVP and replacement of free water deficit remain the cornerstones of treatment. Oral dDAVP has replaced nasal dDAVP as a more reliable mode of treatment for chronic central diabetes insipidus. Hyponatraemia is a common side effect, occurring in one in four patients, and should be avoided by allowing a regular break from dDAVP to allow a resultant aquaresis. Hypernatraemia is less common, and typically occurs during hospitalization, when access to water is restricted, and in cases of adipsic DI. Management of adipsic DI can be challenging, and requires initial inpatient assessment to establish dose of dDAVP, daily fluid prescription, and eunatraemic weight which can guide day-to-day fluid targets in the long-term.


Assuntos
Diabetes Insípido Neurogênico/terapia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Desamino Arginina Vasopressina/uso terapêutico , Diabetes Insípido/tratamento farmacológico , Diabetes Insípido/terapia , Diabetes Insípido Neurogênico/tratamento farmacológico , Humanos , Hipernatremia/etiologia , Hipernatremia/terapia , Hiponatremia/tratamento farmacológico , Hiponatremia/etiologia , Neurofisinas/fisiologia , Precursores de Proteínas/fisiologia , Vasopressinas/fisiologia
14.
Psychoneuroendocrinology ; 111: 104462, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586844

RESUMO

The ventral pallidum (VP) is a critical node of the mesocorticolimbic reward circuit and is known to modulate social behaviors in rodents. Arginine vasopressin (AVP) signaling via the V1A receptor (V1AR) within the VP is necessary for the expression of socially motivated affiliative behaviors in monogamous voles. However, whether the VP-AVP system regulates socially motivated behaviors in non-monogamous species remains unknown. Here, we determined the extent of AVP fiber innervation in the VP as well as the involvement of the VP-AVP system in sociosexual motivation in adult male and female rats. We found that males have nearly twice the density of AVP-immunoreactive (AVP-ir) fibers in the VP compared to females, suggesting the possibility that males experience enhanced AVP signaling in the VP. We further found that this sex difference in VP-AVP-ir fiber density likely arises from an observed sex difference (males > females) in the percentage of VP-projecting AVP-ir cell bodies located in the bed nucleus of the stria terminalis and medial amygdala. To determine the behavioral implications of this sex difference, we next blocked AVP signaling in the VP by antagonizing VP-V1ARs in male and female rats and tested their preference to investigate an unfamiliar male rat or unfamiliar estrus female rat confined to corrals located on opposite ends of a three-chamber apparatus. Under vehicle conditions, males showed a significantly greater innate preference to investigate an opposite sex over same sex conspecific than estrus females. Interestingly, VP-V1AR antagonism significantly reduced males' opposite sex preference, while enhancing estrus females' opposite sex preference. Importantly, all subjects reliably discriminated between male and female stimulus rats regardless of drug treatment, demonstrating a change in motivational state rather than a perceptual impairment induced by VP-V1AR blockade. These results provide a novel functional link between a sex difference in ventral pallidal AVP fiber density and the sex-specific regulation of a sexually motivated behavior necessary for reproductive success.


Assuntos
Arginina Vasopressina/metabolismo , Prosencéfalo Basal/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Arginina Vasopressina/fisiologia , Prosencéfalo Basal/fisiologia , Feminino , Masculino , Motivação/fisiologia , Ratos , Ratos Wistar , Recompensa , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Social , Vasopressinas/metabolismo , Vasopressinas/fisiologia
15.
Curr Neuropharmacol ; 18(1): 14-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31544693

RESUMO

Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Hipotálamo/metabolismo , Ocitocina/fisiologia , Vasopressinas/fisiologia , Animais , Humanos
16.
Dev Psychobiol ; 62(7): 932-940, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31290143

RESUMO

In family-living species, the quality and patterning of caregiving is the product of an individual's role within the family (mother, father, sibling) and parental experience, both of which interact with underlying neurobiological substrates. Among these substrates are the nonapeptides vasopressin and oxytocin, which modulate maternal, paternal, and alloparental care. We used a nonhuman primate model of the "nuclear family," the marmoset (Callithrix jacchus), to investigate relationships between caregiving experience, role within the family, and activation of either the oxytocin or vasopressin systems in shaping responsiveness to offspring. During two phases of offspring development (early infancy, juvenile), mothers, fathers, and older siblings were treated with vasopressin, oxytocin, or saline via intranasal application, and tested for responses to infant distress stimuli in a within-subjects design. Interest in infant stimuli was highest among marmosets that were caring for infants compared to those caring for juveniles, and parentally experienced marmosets were quicker to respond to infant stimuli than first-time caregivers. Moreover, marmosets treated with vasopressin showed enhanced responsiveness to infant stimuli compared to control stimuli only when caring for infants. Thus, in all classes of marmoset caregivers, vasopressin enhances responsiveness to infant-associated stimuli in caregivers during periods in which infant care is most crucial.


Assuntos
Animais Recém-Nascidos/psicologia , Callithrix/psicologia , Comportamento Materno/efeitos dos fármacos , Ocitocina/farmacologia , Vasopressinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Hierarquia Social , Masculino , Ocitocina/fisiologia , Comportamento Paterno/efeitos dos fármacos , Vasopressinas/fisiologia , Vocalização Animal
17.
Brain Struct Funct ; 225(1): 285-304, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820102

RESUMO

Magnocellular neurosecretory cells (MNCs) clustered in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus constitute a major source of oxytocin (OXT) and arginine vasopressin (AVP) peptides, and are among the best described peptidergic neurons in the brain. OXT and AVP are involved in a range of homeostatic processes, social behaviours, emotional processes, and learning. Notably, their actions can be sex-specific, and several sex differences in the anatomies of the OXT and AVP systems have been reported. Nonetheless, possible sex differences in the detailed distributions of MNCs and in their intrinsic electrical properties ex vivo have not been extensively examined. We addressed these issues utilizing immunostaining and patch-clamp ex vivo recordings. Here, we showed that Sprague-Dawley rat PVN AVP neurons are more numerous than OXT cells and that more neurons of both types are present in males. Furthermore, we identified several previously unreported differences between putative OXT and AVP MNC electrophysiology contributing to their partially unique profiles. Notably, elucidation of the highly specific action potential (AP) shapes, with AVP MNCs having a narrower AP and faster hyperpolarizing after-potential (HAP) kinetics than OXT MNCs, allowed unambiguous discrimination between OXT and AVP MNCs ex vivo for the first time. Moreover, the examined electrophysiological properties of male and female MNCs generally overlapped with the following exceptions: higher membrane resistance in male MNCs and HAP kinetics in putative OXT MNCs, which was slower in males. These reported observations constitute a thorough addition to the knowledge of MNC properties shaping their diverse physiological actions in both sexes.


Assuntos
Neurônios/citologia , Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Vasopressinas/fisiologia , Animais , Feminino , Masculino , Ratos Sprague-Dawley , Caracteres Sexuais , Potenciais Sinápticos
18.
Horm Behav ; 119: 104660, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31883946

RESUMO

We outline the progress on the hormonal basis of human paternal behavior during the past twenty years. Advances in understanding the roles of testosterone, prolactin, oxytocin and vasopressin in fathering behavior are described, along with recent research on hormonal interactions, such as those between testosterone and cortisol, and testosterone and the peptide hormones. In addition, we briefly describe the recent leaps forward in elucidating the neurobiological and neuroendocrine basis of fatherhood, made possible by fMRI technology. Emerging from this literature is a developing and complicated story about fatherhood, highlighting the need to further understand the interplay between behavior, physiology, social context, and individual genetic variation. Given the changing roles of parents in many societies, the continued growth of this research area will provide a strong empirical knowledge base about paternal behavior on which to create policies promoting fathers' involvement in their infants' lives.


Assuntos
Pai , Neuroendocrinologia/tendências , Sistemas Neurossecretores/fisiologia , Comportamento Paterno/fisiologia , Relações Pai-Filho , Pai/psicologia , Humanos , Hidrocortisona/fisiologia , Lactente , Recém-Nascido , Masculino , Ocitocina/fisiologia , Pais/psicologia , Comportamento Paterno/psicologia , Prolactina/fisiologia , Testosterona/fisiologia , Vasopressinas/fisiologia
19.
J Neuroendocrinol ; 31(12): e12808, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31715034

RESUMO

Myocardial infarction (MI) is a leading cause of death worldwide. For those who survive the acute insult, the progressive dilation of the ventricle associated with chronic heart failure is driven by an adverse increase in circulating levels of the antidiuretic hormone, vasopressin, which is secreted from hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) nerve terminals. Although increased vasopressin neuronal activity has been demonstrated in the latter stages of chronic heart failure, we hypothesised that vasopressin neurones become activated immediately following an acute MI. Male Sprague-Dawley rats were anaesthetised and an acute MI was induced by ligation of the left anterior descending coronary artery. After 90 minutes of myocardial ischaemia, brains were collected. Dual-label immunohistochemistry was used to quantify the expression of Fos protein, a marker of neuronal activation, within vasopressin- or oxytocin-labelled neurones of the hypothalamic PVN and SON. Fos protein and tyrosine hydroxylase within the brainstem were also quantified. The results obtained show that the expression of Fos in both vasopressin and oxytocin neurones of the PVN and SON was significantly elevated as soon as 90 minutes post-MI compared to sham rats. Moreover, Fos protein was also elevated in tyrosine hydroxylase neurones in the nucleus tractus solitarius and rostral ventrolateral medulla of MI rats than sham rats. We conclude that magnocellular vasopressin and oxytocin neuronal activation occurs immediately following acute MI, rather than in the later stages of chronic heart failure. Therefore, prompt vasopressin antagonist therapy as an adjunct treatment for acute MI may impede the progression of ventricular dilatation, which remains a key adverse hallmark of chronic heart failure.


Assuntos
Infarto do Miocárdio/fisiopatologia , Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Supraóptico/fisiologia , Vasopressinas/fisiologia , Animais , Tronco Encefálico/fisiologia , Oclusão Coronária/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...